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The first part of this paper ($2) briefly reviews the history of the idea of the resonant 
nature of laminar-boundary-layer breakdown. In the second part a new wave- 
resonance concept of the breakdown mechanism is proposed. The existing 
experimental data on the laminar boundary layer (and plane channel flow) breakdown 
are analysed from the viewpoint of this concept and are compared with the 
well-known local high-frequency secondary-instability concept. The results testify to 
the correctness of the proposed wave-resonant concept for the initial stages of 
breakdown, in particular for the K-regime of transition up to the spike formation 
and its doubling. 

Within the framework of the wave-resonance concept, before constructing the 
corresponding theory, many important features of the disturbance development can 
be qualitatively explained and understood. Concerning the understanding of the 
spike appearance, the wave-resonance concept complements the local high-frequency 
secondary-instability one and represents by itself a new fruitful viewpoint on this 
phenomenon. The development of the wave-resonance concept and its application to 
the analysis of numerical and physical experiments, together with the construction 
on this basis of the corresponding theory, can give an essential impetus towards the 
better understanding of the breakdown nature. 

1. Introduction 
The progress of hydrodynamic stability theory and turbulence-onset studies has 

led to the understanding that transition starts long before the pronounced phenomena 
of breakdown are seen, in the laminar flow in the vicinity of the leading edge of a 
model, and even earlier in the external free stream. The onset of turbulence in the 
boundary layer comprises three main stages, schematically given in the book by 
Kachanov, Kozlov & Levchenko (1982), which correspond to the three main aspects 
of the problem that are studied theoretically as well as experimentally. 

At the first stage, in the region of small Reynolds numbers (from the plate nose 
up to the first branch of the neutral stability curve), the generation of the instability 
waves (i.e. boundary-layer eigenoscillations, usually called Tollmien-Schlichting 
waves) takes place. The problem of the generation of these waves by disturbances 
of different kinds (acoustic, vortical and vibrational external disturbances) is often 
called the problem of boundary-layer receptivity to external disturbances. This was 
clearly formulated for the first time by Morkovin (1968) more than 15 years ago, but 
only recently have the first successes in its solution been achieved (see Kachanov 
et al. 1982). In  particular, the important role of the model vibration in the problem 
of receptivity was first experimentally shown and studied by Kachanov, Kozlov & 
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Levchenko (1975), and one of the mechanisms of the transformation of free-stream 
vortices into Tollmien-Schlichting waves (the mechanism of the leading edge) was 
first analysed by the same authors (19783). Studies of the excitation of instability 
waves responsible for the transition to turbulence have recently been intensively 
carried out, especially in the USSR and the USA. To understand the current state 
of this problem as well as the problem of turbulence onset in general, one must turn 
to the proceedings of the IUTAM Symposium on Laminar-Turbulent Transition 
which was held in Novosibirsk, July 1984 (see Kozlov 1985). 

The second stage of the transition corresponds to the propagation of instability 
waves of small amplitude down the boundary layer and to their amplification, if the 
flow is unstable to them, or otherwise to their attenuation. This stage is described 
by the linear hydrodynamic stability theory and has been thoroughly studied at least 
for the case of two-dimensional flows. Since this stage is quite extensive and also since 
the phenomena that take place in the linear region are simply described, the linear 
theory of stability together with receptivity theory are very important for the 
construction of engineering methods of transition calculation based on accurate 
physical understanding of this phenomenon (see Kachanov et al. 1982). 

Finally, when the amplitudes of unstable Tollmien-Schlichting waves reach 
considerable values (1-2 % of the flow velocity) the flow enters a phase of nonlinear 
breakdown, randomization and a h a 1  transition into a turbulent state. This 
breakdown phase is not very extensive, but here transformation of a deterministic, 
regular, often two-dimensional laminar flow into a stochastic and at the same time 
regular, three-dimensional, yet mysterious turbulence takes place. Although the 
region of nonlinear breakdown has been studied for about 40 years, many aspects 
are still unknown. Experimental and theoretical models are being built, hypotheses 
are being made, but the advance is slow. 

But in recent years, owing to the joint efforts of specialists from different countries 
(primarily the USSR, Great Britain and the USA as well as Japan and FRG), 
considerable progress in the understanding of the dominant mechanisms of the 
process of breakdown and randomization of laminar flow has been achieved. This 
progress is associated with the discovery of the important (or even decisive) role of 
resonant phenomena which occur in the process of transition and which determine 
the flow breakdown. This idea, which arose from a series of experimental and 
theoretical works, let us think that the process of laminar-boundary-layer breakdown 
of different types is of a resonance nature. 

The studies of this field are now in full swing. Many questions are not yet clearly 
answered, many hypotheses are still to be proved. The purpose of this paper is to 
briefly review the history of the birth and formation of the idea of the resonant nature 
of laminar-boundary-layer breakdown, to formulate a new, wave-resonance concept 
of breakdown and to verify it using the available experimental data. 

2. Two types of breakdown: role of resonant interaction 
2.1. N-type of transition. Discovery of its resonant nature 

The first studies of the laminar-flow breakdown in the boundary layer were carried 
out by Schubauer & Scramsted (1947). This work served as an experimental basis 
for the concept of hydrodynamic instability and gave the first information about 
nonlinear mechanisms of transition. A t  the end of the 1950s the fundamental 
experiments, which later became classical, were carried out by Klebanoff, Tidstrom 
& Sargent (1962), that laid the foundation of many modern ideas about laminar- 
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boundary-layer breakdown. In these experiments controlled disturbances simulated 
the ‘natural’ ones observed by Schubauer & Klebanoff (1956) and by Klebanoff & 
Tidstrom (1959). In the work of Klebanoff et al. (1962) the mechanisms of the 
laminar-flow breakdown were studied in detail and the applicability of a series of 
theoretical models and hypotheses existing at that time was critically estimated. 
New important features of the nonlinear breakdown were identified. A detailed 
investigation of the three-dimensional-flow velocity field in the same regime of the 
transition was carried out by Kovasznay, Komoda & Vasudeva (1962). 

In  particular, Klebanoff et al. (1962) discovered that the breakdown starts with 
the appearance on the oscilloscope traces of powerful high-frequency flashes or 
‘spikes’ which are doubled, tripled etc. downstream. (Later, Kachanov et al. 1984 
showed that single-spike oscilloscope traces are observed in double-, triple- etc. spike 
stages too. They exist further from the wall.) It could be concluded that these 
flashe-pikes generate turbulent spots, which are responsible for the onset of 
intermittency. The appearance of the spikes was attributed to the local high- 
frequency secondary instability of the primary wave due to inflexion points in the 
instantaneous profiles of flow velocity. These notions about the role of spikes in the 
laminar-flow breakdown as well as about the causes of their appearance were 
predominant for more than two dozen years and are popular now. Up to the middle 
of the 1970s the general opinion was that the succession of nonlinear phenomena 
discovered in the experiments by Klebanoff et al. (1962), which lead to the onset of 
the turbulent regime, is a fundamental property of the flow in a boundary layer. The 
results obtained in that work served as a basis for the majority of further experimental 
as well as theoretical studies, either specifying the data obtained by Klebanoff et al. 
(1962) and Kovasznay et at!. (1962) or attempting to explain phenomena described 
in these papers. The Klebanoff period of investigations ended in 1976. 

In the work by Kachanov, Kozlov & Levchenko (1977, hereinafter referred to as 
I) in Novosibirsk experimental data were obtained that testify to the existence of 
a new type of laminar-flow breakdown in a boundary layer (N-breakdown). In 
particular, in a newly discovered transition regime (which is now often lamely called 
‘subharmonic ’) no flashes of high-frequency pulsations (spikes), typical of the 
Klebanoff breakdown (K-breakdown), were observed and neither were intermittency 
or localized turbulent spots. The transition was realized through the gradual growth 
of higher harmonics, the appearance of low-frequency oscillations in a spectrum, 
including a subharmonic, and their auccessive interaction with high-frequency 
oscillations which smoothly fill up the spectrum. In I it was noted that the onset of 
low-frequency oscillations in the spectrum was always accompanied by three- 
dimensionality and served as a starting device for the beginning of the breakdown 
and randomization of the laminar flow. Later, in the experiments by Saric, Carter 
& Reynolds (1981) and Thomas t Saric (1981) carried out simultaneously with the 
work of Kachanov & Levchenko (1982, hereinafter referred to as 11) the onset of 
three-dimensional subharmonics (a chess-board pattern of A-vortices with frequency 
$ f,) was discovered as in I, but by means of visualization. These works, carried out in 
other installations, confirmed the role of the subharmonic in the N-transition of the 
boundary layer observed in I. 

A study of the causes of the excitation of the low-frequency-oscillation packet and 
of the reasons why the N-type breakdown differs so greatly from the classical 
K-regime of breakdown, was carried out in 11. The same N-regime of transition 
described in I, five years previously, was reproduced in these experiments. The phase 
structure of disturbances in a narrow bandwidth of a frequency filter was studied. 
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The parametric resonant interaction, which amplifies subharmonic priming (or 
initial) disturbances, proved to be the principal mechanism responsible for the flow 
randomization in the new N-type of breakdown. A detailed study of the properties 
of the observed resonance was also carried out in 11. 

The resonant mechanism of the subharmonic amplification was first theoretically 
proposed by Raetz (1959) and further studied for the boundary-layer case by Craik 
(1971) and later by Craik (1978), Volodin & Zelman (1978), Zelman & Maslennikova 
(1982) and others. But until 1980 the resonance had not been observed experimen- 
tally. As a result, many specialists started to doubt whether the resonant triads could 
play a significant role in boundary-layer transition. The boundary-layer non- 
parallelism and a continuous changing of the Reynolds number seemed to break up 
a fragile resonance, the existence conditions of which were strongly influenced by the 
presence of dispersion for the boundary-layer waves. But, in I1 the resonance was 
found. Craik and others studying the resonant triads had not paid particular 
attention to the phase relationship of the waves and to the important property of 
parametric resonances of amplifying only those disturbances with definite phases. 
But it is this property that allowed the discovery of the resonance experimentally 
and determined the important features of the breakdown. 

It was shown experimentally in I1 that there is a large resonance width involving 
a wide continuous spectrum of priming oscillations. As a result, a deterministic 
resonance mechanism in a real transition promotes the growth of a wide bandwidth 
of low-frequency oscillations with a continuous spectrum. It was also shown that this 
spectrum of resonantly excited waves must possess an approximate symmetry with 
respect to the subharmonic of half the fundamental frequency, but need not 
necessarily have its maximum in the region of the subharmonic. These properties 
typify those observed in the N-regime. In  the appendix of I1 it was shown that the 
amplification of a packet of low-frequency oscillations can be regarded as both 
three-wave resonance (from a quasi-stationary viewpoint) and multi-wave resonance 
(from a stationary viewpoint). Therefore it can be said that the existence of 
multi-wave resonances was shown experimentally in I1 before they were studied 
theoretically by Zelman & Maslennikova (1982). 

The rapid resonance growth of disturbances found in 11, despite some differences, 
is in good agreement with the theory of Zelman & Maslennikova (1982). Their 
calculations numerically demonstrated the properties of the resonant sets of waves 
that were discovered experimentally in 11. In particular, a large spectral resonance 
width was demonstrated as well as the property of symmetrization of resonantly 
amplified harmonics. Other characteristic features of three- and multi-wave reson- 
ance were demonstrated in the theory. In particular, as far back as in the work by 
Volodin & Zelman (1978) it was shown that the amplitude of subharmonics grows 
in triplets in the double exponent - a property well-known for the parametrical 
resonance in oscillatory sytems. 

As already noted, after the work in I the subharmonic pulsations were observed 
in the flow-visualization experiments of Thomas & Saric (1981) and Saric et al. (1981). 
As in I and 11, in these experimental investigations it was concluded that the N-type 
of transition of a laminar boundary layer occurs at comparatively small initial 
amplitudes of the introduced instability wave. The visual structure of the chess-board 
pattern of A-vortices obtained by Thomas & Saric (1981) and by Saric et al. (1981) 
corresponds to the manifestation of the subharmonics that have attained a larger 
amplitude. One can also show that the chess-board pattern of A-vortices qualitatively 
corresponds to the modulation in z of the amplitudes and phases of a subharmonic 
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found in 11, and this indicates the amplification of a pair of subharmonic waves 
inclined at opposite angles to the flow direction. The angles of their wavenumber 
vectors relative to the flow direction were about f 60°, as in the experiments in 11, 
and differ a little from the theoretical ones. 

The work I1 was followed by the investigations of Kozlov & Ramazanov (1984) 
and of Saric, Kozlov & Levchenko (1984) who used almost the same technique. In  
the former work the amplification of subharmonics was observed in a plane Poiseuille 
flow and, in the latter, combined hot-wire and visual studies were carried out. Some 
of the conclusions of I1 were confirmed and the range of measurements was enlarged 
up to the final transition to turbulence. It was shown also how an N-type of 
breakdown can be transformed into K-type one and vice versa depending on the 
initial conditions. 

In  the theoretical work by Herbert (1983) a theory of the parametric resonance, 
which differed a little from Craik’s (1971) resonance, was created that studied 
subharmonic wave amplification in plane channel flow. In  this model of the resonance, 
subharmonics are present - Squire waves - that always have vorticity normal to the 
wall and a v-component of oscillation identically equal to zero. The characteristic 
feature of these waves is that they have no dispersion about the angle of propagation, 
and consequently, they should have a considerably weaker angular selectivity when 
the resonance occurs. The selectivity is connected only with the dependence on the 
angle of the coefficients of the intermode coupling (Herbert 1983). The application 
of this theory to the boundary layer (Herbert 1984) gave results that are in good 
agreement with the experimental data of 11. The question aa to which theory (that 
of Craik or that of Herbert) corresponds with the resonance found in the experimental 
work I1 is not yet clear. 

Numerous recent numerical investigations by Kleiser (1982), Orszag & Patera 
(1983), Wray & Hussaini (1984), Laurien (1986) and others demonstrate a good 
agreement with experiments. It was shown that direct computations, which use in 
particular spectral methods, give much additional information about breakdown 
processes in the boundary layers and channel flow. On the other hand, these numerical 
experiments, as well as physical ones, by themselves do not ensure a deeper under- 
standing of the transition process and need physical interpretation. The union of 
numerical methods and correct physical concepts is an effective way towards 
successful progress in this field. 

2.2. Re-estimation of the nature of K-breakdown 
There were many questions to be clarified concerning the classical K-regime of 
breakdown, the study of which began with the work by Klebanoff et al. (1962). 
Despite a large number of theoretical models that tried to explain the various 
phenomena, many fundamental questions were not clear : for example, what was the 
cause of the onset of strong three-dimensionality with a definite preferred period of 
the spanwise modulation along z ? Another important question was the cause of the 
spike generation. There were insufficient data to establish the correctness of any one 
model. Many problems arose because the language of the analysis given by Klebanoff 
et al. (1962) concerned local wave properties in space and time, and this differed 
greatly from the wave-spectral notions usually used in the theories. 

In  1980 in Novosibirsk detailed studies of the K-regime of breakdown were 
conducted under more regular controlled conditions employing the technique of 
frequency and frequency-wavelength complex Fourier analysis of the data. Part of 
the results of the measurements was presented in the paper by Kachanov et al. (1984). 
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FIQWRE 1. Amplification curves of harmonic amplitudes (from Kachanov et al. 1984) measured at 
(a) the peak position at y = 1 mm = const. and (a) for the maxima in y-profiles of each harmonic. 
Z is integral oscillations. 

The results obtained radically changed existing notions about the mechanisms of 
breakdown in the K-regime. 

In  this work all the manifestations of the K-regime found by Klebanoff et al. (1962) 
and later investigators were reproduced, though some flow and disturbance 
parameters were somewhat changed. The frequency analysis of the oscillations 
showed that the spectrum, up to the stage of appearance of the developed spikes, 
contains only the high harmonics nfi (up to n x  20-50). The first important 
conclusion of the work by Kachanov et al. (1984) was that the flashes-spikes are not 
of a stochastic character, but strictly deterministic, periodic and correspond to the 
process of generation in the spectrum of higher harmonics of the fundamental wave. 
(It should be noted that the role of higher harmonics was underestimated in the work 
by Klebanoff et al. 1962.) In  the K-regime the appearance of spikes does not lead to 
the randomization of the flow ; this process occurs at subsequent stages. Thus, the 
question of the nature of the randomization of the flow in the K-regime still remains 
open. 

The growth curves of the amplitudes of the harmonics downstream are presented 
in figure l ( a ) ,  and it would seem that they demonstrate the explosion of high- 
frequency-harmonic amplitudes in the region of the spike formation. But, first, the 
amplitudes of all the harmonics increase (not only of the high-frequency ones). 
Secondly, the effect of the explosion, as shown by Kachanov et al. (1984) is connected 
with the evolution of oscillation y-profiles along 2. The increase of the amplitude of 
each harmonic at  the maxima of their respective y-profiles (figure l b ) ,  shows that 
they not only demonstrate no growth in the region of spike formation, but that on 



The resonant nature of boundary-layer breakdown 49 

(degrees) 
100 

--x 0 i 

0‘ 100 1 / 

x (mm) Y (mm) 

300 400 0 2 4 6 8 

FIGURE 2. Synchronization of harmonic phases in the places where a spike appears (from Kachanov 
et d. 1984). Phases 6 are measured in degrees of fundamental period: (a) peak, y = 4.5 mm; (a) 
peak, 2 = 450 mm ; (c) z = 430 mm, y = 4.5 mm. 

the contrary they decrease. It was found that the spike formation is connected not 
with a jump in the disturbance amplitude, but with the synchronization of the 
harmonic phases in definite regions of space. Figure 2 shows this synchronization 
observed in local distributions along x, y ,  z, in the regions where the spikes appear 
in the oscilloscope traces. 

The frequency-wavelength Fourier analysis of the data conducted by Kachanov 
et al. (1984) shows that, while the spikes are forming, the amplitudes of three- 
dimensional harmonics of the frequency-wavelength spectrum, inclined at a definite 
angle to the flow, gradually amplify. The increments in their amplification K are 1 or 
2 orders of magnitude greater than those for the plane wave of frequency wl,  as given 
in figure 3. Simultaneously, in the phase frequency-wavelength spectra obtained at 
the y-coordinate of spike formation, synchronization of the phases of amplified 
frequency-wavelength harmonics is observed (figure 4). These are all reasons to 
suppose that the process of spike formation represents a resonant amplification of 
‘subharmonics’ of the type (wl ,a , ,  +/3,) under the effect of plane waves 
(2nw1, 2a,, 0) according to the Csaik-Nayfeh-Bozatli mechanism studied for four 
waves by Nayfeh & Bozatli (1979~).  The selectivity of the parametric resonances to 
the phase of the generated waves may naturally explain the phenomenon of phase 
synchronization of a frequency-wavelength spectrum and, as a result, may explain 
the appearance of spikes in oscilloscope traces. 

The aim of the second part of the present work is to analyse critically the existing 
experimental data on disturbance development and flow breakdown from the 
viewpoint of the proposed lower wave-resonance concept and in particular to  compare 
this new approach with the concept of local high-frequency secondary instability. 
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FIGURE 3. (a) Frequency-wavelength spectra for frequency w1 (y = 1 mm) a t :  (i), x = 300; (ii), 350; 
(iii), 400; (iv) 450 mm, and (b) their ratios: (v), (ii)/(i); (vi), (iii)/(ii); (vii), (iv)/(iii) (from Kachanov 
etd. 1984). 
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FIGURE 4. Frequency-wavelength amplitude and phase spectra for frequency w1 (y = 4.5 mm): 

(i)-(vii), x = 300, 350, 400, 420, 430, 440, 450 mm respectively (from Kachanov et al. 1984). 

3. Wave-resonance concept 
3.1. On the correspondence between wave packets and their spectra 

The object of this section is to demonstrate the correspondence that exists between 
characteristics of wave packets (as fluctuations in time) and properties of their 
frequency and frequency-wavelength spectra. These properties are well known, but 
they are very important for the subsequent discussion. 

Time-periodic flashes having an identical form are an example of simple packets 
(figure 5a,  curve i). Their frequency spectrum consists of the high harmonics on = nu1 
( n  = 2,3 ,4 . .  .) of the fundamental frequency ol, which are shown in figure 5b (curve 
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FIQURE 5. (a) Simple wave packets and (6) their amplitude, and (c) phase spectre. 

i). The phases 8, of the packets in curve (i) are equal to zero. (Here and subsequently 
the waves A, cos (8,-m1 t )  are considered.) The flash takes place at t = 0 because 
there all harmonics are superposed in phase. Then the phases are disordered and the 
harmonics interfere. After a period = 2x/u1 the phases coincide again with the 
same value as at t = 0. Therefore the flash appears again near t = T,. 

The displacement of the phases of all the harmonics by the same value A8 leads 
to synchronization (taking place in each period) not of the crests of the waves (as 
in the case 8, = 0), but of the Characteristic points with the phases x = A8. Curves 
(ii) in figure 5 correspond to the displacement A8 = x, leading to the periodical 
synchronization of the wave valleys, but not of crests (see curves (i) in figure 5 ) .  In  
other words, the shift A8 leads to the displacement of the ‘phase’ of quasi-sinusoidal 
oscillations within the packet by an angle %Ad. 

When the phases of the harmonics change by the angles A8, = nx, a shift of the 
moment of phase synchronization (i.e. of the packet centre) At = x/ul takes place. 
The phases of characteristic synchronized points also change by a value x. An 
example of such phase shift, when x = $t, is shown in figure 5 (curves iii). 

Phase spectra for curves (ii) and (iii) are shown in figure 5 ( c ) .  The phases of the 
harmonics play a prime role both in the appearance of wave packets and in their 
properties. Curves (iv) in figure 5 (a-c) demonstrate what happens to the packets when 
the harmonic phases are disordered (in this case they .have random values). The 
packets are shown to disappear. 

What will happen to the packets if the frequencies of spectra (like those in figure 
5 b )  are shifted by some value Au ? An example of such packets is shown in figure 6 (a). 
Their spectrum (figure 6b) coincides in form with the spectra in figure 5 (b). The initial 
phases of all the harmonics are equal to zero (the same as for curves (i) in figure 5) .  
However the frequency shift Au = 0 . 2 5 ~ ~  leads to a variation in the shape of the 
flashes with time, though they are observed in each period Tl as before. It is clear 
that after n periods the characteristic points with phases 2, = n AwT, = n(Au/w,) 21c 
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FIQIJRE 7. Spectrd model of the intermittency phenomenon. 

will be synchronized. Figure 6 (c) demonstrates this fact graphically, showing 5th, 
7th, 8th and 10th harmonics shifted by the value +0.25w,. 

Finally, it is interesting to consider the case when a spectrum consists of a sum 
of the spectra (like those in figure 6 b )  having different Aw and w,, but the same wl. 
This is shown in figure 7 (b), with the corresponding oscilloscope traces shown in figure 
7 (a). The initial phases 8, for all the harmonics in figure 7 are equal to zero, leading 
to synchronization of crests at t = 0 (marked by a cross). When the number of groups 
of harmonics, having random frequency shifts Auk, growing mean frequency w, and 
slowly decreasing amplitudes, is increased (see curves i-iv), the flashes acquire a quite 
complex character. The oscillations 'forget' their zero initial phases very quickly (at 
t > 0) but they do not 'forget ' the fundamental period q. 

Curves (iv) in figure 7 (a) can be regarded as a spectral model of the intermittency 
studied by Kachanov, Koslov & Levchenko (19784 for the boundary layer and by 
Miksad (1973) for free-shear flow. 
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3.2. Wave-resonance concept for K-breakdown 

As noted above, I contained a suggested explanation of the main causes of the 
difference between the classical K-regime of laminar-boundary-layer breakdown (see 
Klebanoff et al. 1962) and the new N-regime described in I, based on the analysis of 
experimental and theoretical data. This difference was explained by the predomi- 
nance in the K-regime (when the initial amplitudes are higher) of the parametric 

( 1 )  
resonances between waves 

( 2 ~ 1 ,  azn, 01, 

( ~ 1 , a n ,  + B n ) ,  (2 1 
which amplifies, in particular, a determinate set of priming waves (2). In  contrast 
the N-regime displays subharmonic resonance between waves 

( q ,  a l ,  01, (3) 

(34, a+ ,  *B$, (4 )  

which amplifies random priming waves near the frequency !p1. The overriding 
importance of the resonances of waves ( 1 )  and (2) in the K-regime is conditioned by 
the fast generation of plane high harmonics 

( m 1 7  ( 5 )  

of the fundamental wave as a result of harmonic resonance. Just as the existence and 
the dominating role of the resonance of waves (3) and (4 )  in the N-regime of the 
breakdown were discovered experimentally and substantiated in 11, so the existence 
of harmonic resonances for the m-plane waves and the existence of parametric 
resonances ( 1 )  and (2) (when m, n > 2 )  are postulated here as a generalization of the 
two-wave harmonic resonance studied by Nayfeh & Bozatli (1979b), and of the 
four-wave parametric resonance of ( l ) ,  ( 2 )  and (5)  (when m, n = 1 )  proposed by Craik 
(1971) and studied by Nayfeh & Bozatli (1979a). This generalization may be admitted 
in view of two main circumstances. First, the presence of the strict hierarchy of high 
harmonic amplitudes that was found for the K-regime by Kachanov et al. (1984) in 
the stage up to the spike appearance, and a monotonic decrease of their amplitudes 
according to the law of geometric progression when the m-number grows (see figure 
8a) ,  testify to the validity of the weakly nonlinear approach and to the efficiency of 
the spectral representation in this stage of the development. Secondly, the presence 
of a strong resonant coupling of waves ( 1 )  and (2 )  gives us every reason to think that 
the development of the resonant sets (in a simple case, of triads) proceeds 
independently in the first approximation. 

Nayfeh & Bozatli (1979a) noted that in the case of the four-wave resonance for 
waves ( l ) ,  (2) and (5)  at n, m = 1 there ‘take place two interaction processes at the 
same time. The first one is the interaction between a two-dimensional fundamental 
wave and its second harmonic. As shown by Nayfeh & Bozatli (19794,  this is a strong 
destabilizing mechanism for the second harmonic. In  the second part of the 
interaction, the second harmonic interacts with its two three-dimensional subhar- 
monk waves of order one-half and produced large increases in the amplitudes of the 
three-dimensional waves ’. 

Very important properties of the parametric amplification of the instability waves 
were found in 11, namely (i) an exceptionally large spectral width of the resonance, 
(ii) the property of symmetrizing a spectrum of the amplified disturbances relative 
to the subharmonic frequency, and (iii) a very wide zone of parametric amplification 
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(without the reverse influence of the subharmonic on the fundamental wave) valid 
even for subharmonic amplitudes exceeding the amplitudes of the fundamental wave. 
These properties lead to a number of important conclusions when the generalization 
for the case of the m-resonances is carried out. 

First, besides the harmonics with frequencies nu1 (i.e. subharmonics for waves 
2n01), because of the observed large width of the resonance (Aw - @ l ) ,  a number 
of neighbouring modes 

will also lie within the resonance zone. 

only by harmonics of type (1) but also by odd harmonics 
Consequently, the three-dimensional waves can be generated parametrically not 

which do not have their own priming subharmonic of frequencies (2n- 1)!pl with 
large amplitudes but which can amplify waves of type (6). 

In view of property (ii), parametric amplification will lead to a fast, predominant 
amplification of the high-frequency harmonics (n+ 1)  w1 (1  5 !p), which will be 
symmetrized with the low-frequency harmonics (n- 1)  w1 having relatively large 
amplitudes. In  fact, the mechanism of symmetrization (ii) (discussed in detail in 11) 
means that the harmonics (n-Z)wl play the role of priming waves for the 
amplification of the harmonics (n + I )  wl. The property (iii) means that, in the present 
case, such an amplification may drive the amplitudes of the harmonics (6) up to the 
amplitude of the plane forcing wave like (1) or (7). Moreover, the superposition of 
these waves (owing to the overlapping of the resonant zones for different n), 
synchronized with respect to the phase, may give spatially localized excesses of the 
amplitudes of resonantly amplified three-dimensional modes (6) over the amplitudes 
of plane waves generated by harmonic resonance. 

Note two more circumstances. An essential difference between harmonic resonances 
and the parametric subharmonic ones is that the former themselves generate the 
oscillations with high harmonic frequencies ; but initial, priming, waves in the spectral 
region of the resonance are necessary for realizing the parametric amplification. 
Without priming this latter amplification will not always be observable (see, for 
example, 11). 

Another difference of this resonance (or near-resonance) interaction arises from the 
nature of the amplified modes. The parametric resonance amplifies free (eigen) modes 
of the boundary layer of type (2), (4) and (6) or the modes close to them (because 
of nonlinear distortion). Disturbances of type (l),  (5 )  and (7), which are amplified by 
harmonic (and combination) resonance, really consist of the superposition of bound 
(pure nonlinear) oscillations and free (eigen) ones, generated by nonlinearity. 

Figuratively speaking, the wave-resonance concept for the case of K-breakdown 
may be formulated as follows. The harmonic resonances pave the way through a 
sparsely inhabited spectrum for the disturbances, generating the plane high har- 
monics (that drive the parametric resonances), with smaller three-dimensional dis- 
turbances (being the priming waves for the beginning of parametric amplification). 
The parametric resonances amplifying three-dimensional harmonics in a wide region 
of low frequencies proceed in this way. 

The qualitative scheme proposed here requires (i) an estimate of its experimental 
correctness and (ii) carrying out corresponding theoretical estimations and calcula- 
tions. The next sections of this work concern the first of these two purposes. An 
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analysis of wave kinematics will be performed, with the aim of clarifying the 
properties (especially the phase properties) expected of disturbances amplified by 
resonances and comparing them with the phenomena actually observed. 

4. Phase properties of resonantly amplified waves: comparison with 
experiment 

4.1. Harmonic resonance of plane waves 
Usually in theoretical studies (in particular, in the work of Nayfeh & Bozatli 1979a, b 
where an analysis of such resonance is carried out) special attention is paid to the 
amplitudes of resonantly amplified waves and also to their distributions in space. 
However, the phase properties are very important for understanding the nature of 
the phenomena observable in the experiments of K-breakdown (see the work by 
Klebanoff et al. 1962 and Kachanov et al. 1984). 

The nonlinear harmonic resonance of plane waves leads to the generation of 
two-dimensional high harmonics of the fundamental wave of type (5 ) ,  which in the 
plane-parallel approach can be represented as 

Here A ,  is the complex wave amplitude, a, is the wavenumber, w, is the frequency, 
and $, is the initial phase. We also designate a,x+$, = 8,(x).  

As is known, satisfaction of the phase synchronism conditions (see Nayfeh t 
Bozatli 19793) is necessary for the manifestation of harmonic resonance. These 
conditions for the case of n waves are 

The second of these conditions is not exactly realized in practice because of a small 
degree of dispersion. But for the phases of real, resonantly amplified waves this 
detuning can be compensated partially or completely owing to the phenomenon of 
phase capture, which was certainly observed in I1 for the case of parametric 
resonance. 

The condition (9)  means (see 83.1) synchronization of the phases of all harmonics 
at the time moment At = 8,/w1, at those characteristic points with phase x = 8, (see 
figure 5, curves iii). The difference from the situation considered in 83.1 consists only 
in the fact that the wave packet amplified by the harmonic resonance begins with 
the harmonic w1 and contains all higher harmonics decreasing in amplitude. In  figure 
8(a) ,  obtained from Kachanov et al. (1984), it  can be seen that in the K-regime the 
amplitudes of the high harmonics, as determined by their maxima in the y-profile, 
decrease almost exactly in accordance with a geometric progression with a factor 
q z 0.32 a t  the point x = 350 mm (long before the spike formation), and they decrease 
exactly in this way with the factor q = 0.48 at x = 400 mm. 

A model of such an amplitude spectrum with q = 0.32 is shown in figure 8(b) .  The 
traces represented in figure 8(c)  (curve i) correspond to this spectrum at 8, = 0. (It 
is clear that it is possible to make the phase 8, = 0 by an appropriate shift of the 
time axis.) The usual normalization of phase profiles employed in the theoretical 
work, that 8+0 at y + m ,  means that such a synchronization of the wave crests 
should be observable near the boundary-layer top, i.e. in the region that is higher 
than the phase jumps observable for all the harmonics in the experiment of Kachanov 
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FIQWFCE 8. (a) Amplification of maximal amplitudes of frequency harmonics during spike formation 
in the peak position; (d )  oscilloscope traces at 2 = 350 mm, and (c, b)  their simulation (based on 
the data of Kachanov et al. 1984). 

et al. (1984) and in the experiment performed by Gilyov, Kachanov BE Kozlov (1981). 
This synchronization is actually observed in Kachanov et al. (1984). The experimental 
curve (iii) in figure 8 ( d )  taken from Kachanov et al. (1984) corresponds to the region 
above the jumps (z = 350 mm, y = 4 mm); this is in good qualitative agreement with 
curve (i) in figure 8 (c). 

It is clear that, because of the dependence of the wave phases on y, other 
oscilloscope traces should be observed on moving towards the wall. It was demon- 
strated in $3.1 that the phase shift of all the harmonics by the same angle (i.e. 
Aen = AB) leads to displacement of the phase angle of the synchronized characteristic 
points. Curve (i) in figture 8(c), as noted, corresponds to the synchronization of the 
crests, i.e. of the characteristic points having the phase x = 0. As a result, the crests 
of the summed wave are somewhat sharpened. After shifting the probe towards the 
wall through the phase jumps of all the harmonics that were observed in the 
experiments of Kachanov et al. (1984) (see also figure 9 a ) ,  characteristic points having 
phase x = n (i.e. the wave valleys) will be synchronized. For the model spectrum in 
figure 8(b )  such a situation corresponds to the oscilloscope trace (ii) in figure 8(c). 
Indeed, just such a change in the form of the oscilloscope traces is observed below 
the jumps in the experiment of Kachanov et al. (1984) (curves (iv)-(vi) in figure 8 4 .  
The synchronization of the harmonic valleys leads to sharpening of the valleys of the 
summed oscillations. 

4.2. Parametric ampli$mtion of three-dimensional harmonics 

In accordance with the wave-resonance concept presented in $3.2, the harmonic 
resonance amplifies two-dimensional harmonics w, of higher and higher frequency 
and creates the conditions for parametric resonant amplification of three-dimensional 
waves. As noted above, three-dimensional priming disturbances in the range of 
frequencies from - (n- 1 )  w1 to - ( n  + 1 )  w1 are necessary for this amplification. Here 
1 N ?p and rn = 2n or 2n+ 1. The most intensive priming disturbances in this 
frequency range in the K-regime coincide with the frequencies of the harmonics 
k:wl(n - 1 5 k 5 n + 1 ) .  A combination of the nonlinear interaction of plane harmonics 
with the non-uniformity of the mean flow in the z-direction can create three- 
dimensional priming waves for the subsequent parametric resonances. In the con- 
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trolled conditions in the experiments of Klebanoff et al. (1962) and in Kachanov et al. 
(1984), the wavelength spectra (obtained as a result of Fourier transformation in the 
z-direction) consist of harmonics 28,(Z = 1,2, . . .) of the wavenumber = 2n/A1,, 
where Alz is the chosen interval of the spacers (see figures 3 and 4). 

The well-known property of parametric resonance of amplifying only those 
disturbances having definite values of phase 9, or 9, + IC was shown in the experiments 
of I1 ; these experiments also determined that the value 9, is equal to IC in the region 
below the phase jumps in the y-profiles of disturbances. It corresponds to q5r = 0 in 
the region above the phaw jumps. What is the actual phase structure of the 
frequency-wavelength priming harmonics, generated by a combination interaction 
in the framework of the wave-resonance concept, and how does it correlate with the 
resonant values of the phases that are necessary for the realization of parametric 
amplification and for the spike formation in the K-regime ? 

In  the first section (z = 300 mm) in the experiments of Kachanov et aZ. (1984) we 
have an initial three-dimensional stationary mode (actually a spanwise-periodic 
modulation of the mean flow) of the type (0, b,). The initial phase of this mode is equal 
to zero when the origin of the z-axis is placed in the peak position. Nonlinear 
combination interaction of this mode with the plane fundamental wave and with its 
higher harmonics gives modes of the type 

(m1, +18J (10) 

It is not difficult to show that all the harmonics of this type must have zero phase 
at the point z = 0. 

Thus, the priming disturbances for the parametric resonances in the K-regime are 
found to have at the peak position ( z  = 0 )  the most favourable (the phase x is 
favourable too) and identical resonant initial phases. This very important fact 
determines the occurrence of the K-breakdown. 

The determinism of the priming disturbances and their coherence with the forcing 
wave are the essential difference between the parametric resonances in the K-regime 
at the stage of spike appearance and those in the N-breakdown. Another important 

FIQURE 9. (a) Amplitude, phase and mean velocity profiles in the peak position at x = 350 mm, 
and (a) growth of wavenumber of most amplified frequency-wavelength harmonics along 2 for 
different frequencies. 
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difference consists in the presence in the K-regime of a set of forcing waves having 
priming disturbances of the same frequency. It was shown experimentally in I1 that 
the wavenumber /3 for the resonantly amplified oscillations is increased when the 
frequency of the forcing wave is increased, the travelling angles of the amplified 
waves being roughly unchanged d+ x f60". This means that, because of the large 
spectral width of the resonances (observed in 11), each of the frequency harmonics, 
especially those with large k, will participate simultaneously in a number (may be 
in tens) of resonances having different frequencies of forcing waves. Therefore, a t  the 
fixed frequency 0, = ko, of this harmonic, the different resonances will amplify 
three-dimensional waves with different wavenumbers p1 = lpl. The higher the 
frequencies of the forcing waves w, the larger are their wavenumbers a, and the 
larger the wavenumbers /I1 of the amplified three-dimensional waves. This 
means that more and more high harmonics /3, will be amplified downstream because 
of the growth of amplitude of plane high-frequency harmonics (see 84.1). This is 
observed in the experiment of Kachanov et al. (1984). The graph shown in figure 9 ( b )  
is drawn on the basis of the table from that work. The dependence of 1, the number 
of the most amplified three-dimensional harmonics p, = 18, for the frequencies 
w, = w1,w,,w3, on the downstream distance is shown. The number 1 grows down- 
stream and grows with increasing wk.  

The amplitudes of the amplified three-dimensional waves will quickly grow, 
especially for k 2 +m, because of the effect of symmetrization of the form of the 
spectrum relative to the subharmonic frequencies (see 83.2). This increases the am- 
plitudes of harmonics ! p + l  up to the amplitudes of harmonics ? p - 1  having the 
same wavenumbers pl. As was noted in $3.2, the parametric, linear character of the 
resonance (i.e. the absence of the reverse influence of the amplified waves on 
the forcing wave) persists up to amplitudes A,, - A,,. It can be seen from the 
experiments of Kachanov et al. (1984) that the amplitudes of three-dimensional 
frequency-wavelength harmonics A,, grow to values -2 yo, when the amplitude of 
the plane forcing wave A,, is only - 1 %. Taking into account the generation of A,, 
by two different resonances and the dependence of A,, on the y-coordinate, it can 
be concluded that in this respect the experimental results of Kachanov et al. (1984) 
are also in good agreement with the wave-resonance concept. 

Let us consider now the results of such resonant parametric amplification of 
priming waves of type (10). First we add up the waves ( + ) and ( - ) of type (6) since, 
by reason of symmetry relative to the x-axis, such waves are experimentally observed 
to occur in pairs. (Zelman & Maslennikova (1982) found that in asymmetric cases the 
resonance symmetrized the subharmonic ( + ) and ( - ) in the same manner as did the 
frequency spectrum in the experiments of 11.) The superposition of these waves gives 
the usual picture of a standing wave. Their initial phase, as before, is equal to zero 
near the peak position ( z  = 0 )  and also near the points z = +2kx//3,. 

The resonant parametric interaction will lead, at z = 0 (i.e. in peak locations) to 
amplification and to symmetrization of the amplitudes of pairs of priming waves with 
frequencies w, = w,+Aw,, where w, is the subharmonic frequency (see 11). The 
superposition of such a pair of resonantly amplified harmonics creates a beating of 
amplitudes in time according to the law Icos (Aws t ) l ,  and phase jumps in the moments 
when the amplitudes are equal to zero. 

An example of such superposition of three different resonantly amplified pairs of 
disturbances is modelled in figure 10 (curves iii-v). Curve (vi) corresponds to the 
amplified coherent subharmonic with frequency w, = low,. Curves (iii)-(v) corre- 
spond to the superposition of resonantly amplified and symmetrized pairs of waves 
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FIQ~RE 10. Simulation of parametric amplification of some high-frequency harmonics of the 
fundamental wave. 

wg, wll ; wg, w12 and w,, w19. Curve (ii) is the forcing wave w20 = 200, and curve (i) is 
the fundamental wave wl. 

Figure 10 demonstrates that the resonantly amplified subharmonics and quasi- 
subharmonics are locally in phase or in antiphase with the forcing wave (compare 
with figure 6 in 11). Because the detunings Aw, are divisible by wl, the synchronization 
of the initial phases with x = 0 (of the wave crests), which is favourable for the 
resonance, is reproduced periodically at the times kT, for all Aw,. For other time 
moments, however, the resonant amplification of individual frequency pairs of 
harmonics is still present (moments (be) in figure 10, for example), but the phases 
of the characteristic synchronized points are different for the different pairs (valleys 
or crests). The analogous situation is observed for other forcing harmonics w,. 

The superposition of quasi-subharmonic waves such as those shown in figure 10 
(curves iii-vi) gives, for different w,, the curves shown in figure 11 (a)  and labelled 
(ii), (iii) and (iv) for m = 20, 18 and 19 respectively. The amplitude spectra 
corresponding to these curves are shown in figure 11 (b). These spectra reproduce 
qualitatively a wave packet being amplified by each of three resonances with forcing 
waves wao, wI8 and w19, respectively (see spectra in figures 4 and 14a in 11). The 
characteristic amplitude of these packets grows as w, and w, decrease, since the 
amplitudes of plane forcing waves w, and priming waves with frequencies w, f Aw, 
then grow too. 

Superposition of a set of such packets, together with its spectrum, is shown in figure 

3 F L Y  184 
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FIQURE 11.  Formation of spikes by parametric resonances. 

l l (a ,b)  (curves v). This amplitude spectrum models one actually observed in the 
experiments of Kachanov et al. (1984) a t  5 = 420 mm, where the harmonic amplitudes 
decrease according to the geometric progression with the factor q = 0.8 (see figure 
8a) ,  but the chosen phases of harmonics for the trace correspond to the wave- 
resonance concept. The point of phase synchronization for all the harmonics is 
displaced by n after crossing the phase jumps of harmonics as y diminishes (see $5.1 
and figure 12a below). Therefore, in the region lying below the jumps, the oscilloscope 
traces have the form shown in curve (vi) of figure 11. 

So, as seen, the nonlinear development of the primary wave in a spanwise- 
modulated mean flow must lead, from the wave-resonance point of view, to the 
appearance of oscilloscope traces having spikes which are typical for the K-regime 
of breakdown. 

Besides the experimental facts shown to be well explained in the framework of the 
proposed wave-resonance concept, a great number of other features observed in the 
K-regime as well as in the N-regime of breakdown can be qualitatively explained and 
understood from this viewpoint. This explanation is concerned with different 
distributions in the space (2, y, z, t ) ,  a number of which will be demonstrated in the 
next sections . 
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FIGURE 12. Dependence of (a) phases and (b) amplitudes of eigenfunctions of three-dimensional 
waves in a flat-plate boundary layer upon propagation angle 0, measured by Gilyov et d. (1981). 
Re* = 1220, F = 94x lo-@. 

5. Properties oft, y ,  z distributions: explanation of experimental data 
5.1. Oscilloscope traces and y-projiles 

Why do we usually observe spikes only in the external part of the boundary layer 
(below the jumps of the harmonics’ phases) and not at other distances from the wall ? 

From the general properties of the parametric resonances and from a comparison 
of the experimental results of I1 and those by Gilyov et al. (1981) the conclusion 
follows that the form of the y-profiles for frequency-wavelength harmonic ampli- 
tudes and phases, which are resonantly amplified, is close to the profiles of the linear 
three-dimensional eigenwaves. These profiles (eigenfunctions measured by Gilyov 
et al.) are shown in figure 12. Since in the K-regime parametric resonance amplifies 
a wide spectrum of three-dimensional waves having Merent  Bl for each of the 
frequencies, the cause of the spikes vanishing in the oscilloscope traces at y < y;  
becomes clear. This phenomenon takes place as a result of the detuning of the 
frequency harmonic phases because the higher is the harmonic frequency, the larger 
are typical values of pl in its wave spectrum (see figure 9b) ,  and the more its phase 
starts to change towards the wall (see figure 12a) .  The lack of coordination of the 
phases of different frequency harmonics destroys the spikes in the oscilloscope traces. 

The cause of the ‘absence’ of the spike in oscilloscope traces in the region y > y i  
is connected with the fast decrease of amplitudes of all the frequency harmonics above 
the phase-jump zone. In their turn the small oscillation amplitudes, observed higher 
than the phase jumps, are connected with the smallness of the eigenfunction ‘tails’ 
for three-dimensional waves (see figure 12b).  Their amplitude decreases very quickly 
with the growth of B. Nevertheless, the harmonic phases remain in synchronism at 
y > y t ,  the wave crests being synchronized. This circumstance should generate a 
spike that is orientated upwards and has a small amplitude. This ‘small spike’ is 
actually observed in the experiments of Kachanov et al. (1984) (as well as in the work 
by Klebanoff et al. 1962) at the peak position when y > y:. 

The properties of the phase profiles of three-dimensional waves also provide a 
possible explanation, in the framework of the wave-resonance concept, of the 
appearance of the second spike (just in the region y < y; )  and of some of its properties. 

The wave-resonance concept also permits an explanation of the form of the 
frequency-harmonic-amplitude profiles at the stage before the spike appears, where 
the local secondary instability of the flow was studied by Nishioka, Asai & Iida 
(1980). The corresponding profiles taken from Kachanov et al. (1984) are shown in 

3-2 
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FIQURE 13. Amplitude, phase and mean-velocity profiles at the peak position at x = 400 mm 
(from Kachanov et al. 1984). 

figure 13 for the peak position and at 2 = 400 mm (in the terminology of Nishioka 
et al. (1980) it corresponds to the 11.5 Yo stage). It is seen that the amplitudes of all 
the frequency harmonics at first grow a t  y 5 y t  but then they quickly decrease in 
turn in the region y N y; to very small values, beginning with the highest frequency 
harmonic. In contrast, the first and second harmonics change rather slowly. From 
the wave-resonance point of view this peculiarity of the amplitude profiles is 
explained by the interference of the frequency-wavelength harmonics having dif- 
ferent Is, but the same wk. A lack of phase coordination occurs because of the 
differences in the phase profiles observed near the wall for the different /3 (see figure 
12a). The harmonics with higher frequencies start to decrease farther from the wall 
because there the wavelength spectrum is richer and further displaced towards high 
/3 (see 54.2). 

The properties of the y-profiles observed in the valley position - in particular their 
double-hump form for the fundamental wave - can also be explained in the same way 
(and it is close to the explanation given by Craik 1980). Briefly, its essence is that 
waves (q, 0) and (q, +/3,), which have the same phases in the peak position, are in 
antiphase in the valley position (see $4.2) and their amplitudes are of the same order 
(see Kachanov et al. 1984). The subtraction of these waves, with their individual 
amplitude y-profiles (measured by Gilyov et al. 1981 see figure 12), leads to the typical 
double-hump profile form. Within the framework of the proposed conception it is not 
difficult to  explain similarly the profile forms of other frequency harmonics observed 
in the valley position. 

Thus, as was shown, many of the important properties of the oscilloscope traces, 
of phase and amplitude profiles of the frequency harmonics observed by Kachanov 
et al. (1984) as well as of the integral profiles observed by Klebanoff et al. (1962) can 
be qualitatively explained and understood from the viewpoint of the wave- 
resonance concept. 

The analysis of the nature of the K-regime of breakdown presented above can explain 
the causes of the appearance of the spikes in space observed by Kachanov et al. (1984). 

having the same frequency gives, 
by addition, a beating of the amplitudes in the z-direction and jumps in the phases 
of x ,  just as in the case of a standing wave. But the positions of the phase jumps 

5.2. z-Di&ibutiom 

As was noted in $4.2, a pair of harmonics 
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FIGURE 14. (a&) Simulation of (e), the transverse distribution 
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z = (in f h ) / p 2 ,  depend on the Is,. It is easy to show that the phase will remain equal 
to zero at the points z = 0 f 2n/b2 (i.e. in the peak position) when Bl is growing, and 
the amplitude will have its maximum as before. At the same time, at other points 
the amplitudes and the phases will change with Bl.  Synchronization of the frequency- 
wavelength-harmonic crests at peak positions and lack of phase coordination at other 
points are quite analogous to the phase synchronization in time for the frequency 
harmonic, examined in $4.2. Therefore, when the wavelength spectrum contains 
enough harmonics for each frequency (as happens at  rather large x ) ,  the distributions 
of the frequency-harmonic amplitudes in the z-direction will contain ‘spikes in space ’. 
They differ from the usual spikes in time because the change of sign is not important 
for the standing wave. Therefore, the absolute value of the oscilloscope trace with 
spikes should coincide qualitatively with the z-distribution of spikes. A model of the 
trace with spikes mentioned above and its absolute value are shown in figure 14 (a, c ) .  
The amplitude spectrum is shown in figure 14(b) and corresponds to the position 
x = 430 mm in the experiments of Kachanov et al. (1984). The hite length of the 
hot wire in the z-direction (the length was equal to 0.5 mm and a typical spike width 
was about 2 mm) was taken into account in the curve shown in figure 14(d), which 
is more smooth. This curve reproduces quite accurately the z-distribution of the 
fundamental frequency harmonic obtained in Kachanov et al. (1984) and shown in 
figure 14(e). 

The above picture of the superposition of standing waves having different BZ also 
explains the phase distribution for all the frequency harmonics in the z-direction 
(figure 2c) .  In  particular, it  explains the shelf observed in the spike region which is 
a characteristic peculiarity of these distributions. 

Thus, the wave-resonance concept proposed in the present work can explain many of 
the important peculiarities of the behaviour of the disturbance amplitudes and phases 
observed in the four-dimensional space ( x ,  y, z, t )  in experiments, both in  the K-regime 
and in  the N-regime of breakdown, as well as in the intermediate cases (see the work of 
Saric, Kozlov (e: Levchenko 1984). In particular, it is easy to explain the transformation 
of the A-vortex structure under the influence of the subharmonic excitation observed 
in this work. 

The existence of the phenomenon of the ‘preferred period in the z-direction’ and 
its cause has been discussed for more than 25 years. The proposed wave-resonance 
concept of breakdown allows us to solve this problem. 
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The A-vortices within the framework of this concept are the usual wave packets 
consisting of a lattice of frequency-wavelength harmonics that are synchronized in 
phase. As WM shown in $$ 4.2 and 5.1, the chosen periodicity in the z-direction excited 
by the experimental spacers and based on the wavenumber PI does not strongly 
influence the process. From the wave-resonance point of view there are no conditions 
or limitations, apart from uniqueness imposed on the value of PI. It is necessary that 
two or three harmonics Pl = lP1 lie within the range of wavenumbers AP8 amplified 
by parametric resonances (i.e. the condition PI 5 (2-3) AP8 should be satisfied); 
otherwise the resonances will not have the coherent priming waves which are 
necessary for the amplification and formation of spikes. In the latter case the 
breakdown will be essentially different and either an amplification of the non- 
controlled background will take place (as in the experiments by Klebanoff & Tidstrom 
(1959) and Nishioka et al. (1980) carried out without the spacers) or the transition 
will switch over to the N-regime of breakdown (see I and 11) if the fundamental wave 
amplitude or non-uniformities in the z-direction are not so large. 

It follows from the wave-packet properties (see $3.1) that a decrease of the /I1 leads 
only to an increase of the distance between the packets (i.e. between A-vortices) in 
space but the packet width, the characteristic frequency of the oscillations within 
them, and even their form remain practically the same. These characteristics depend 
on the APs and P8 (resonant wavenumber) which are controlled by the properties of 
the parametric resonance, the primary mean flow, the fundamental wave frequency, 
its intensity etc. 

Such, in principle, is the solution of the problem of the preferred period in z. A 
definite period simply does not exist. The observed constancy of a typical A,, within 
each different set of experiments can be easily explained within the framework of the 
wave-resonance concept through the initial wavelength spectrum which is set by the 
experimental conditions. 

As far as the problem of the spike appearance is concerned, the question arises: 
how does the proposed wave-resonance concept correlate with the well-known local 
high-frequency secondary instability one? What do the results of the direct test of 
the latter concept obtained by Nishioka et al. (1980) mean from the new, wave- 
resonance viewpoint ? Section 6 is devoted to these questions. 

6. Two concepts of spike appearance 
6.1. The concept of local high-frequency secondary iwtability of ajtlow 

As is well known, the local high-frequency secondary-instability concept is based on 
the idea that the flashes of high-frequency oscillations, appearing locally in space and 
time with the period of the primary wave, are generated as a result of the instability 
of instantaneous flow velocity profiles formed by the primary wave in definite places. 
This concept was studied theoretically by Betchov (1960), Greenspan & Benney 
(1963), Gertsenshtein (1969), Landahl(1972), Zhigulyov et al. (1976), Zelman (1981), 
Itoh (1981) and others. In practice these instantaneous profiles are not formed by 
a sinusoidal wave. This primary wave is always strongly disturbed by the high 
harmonics and it is strongly modulated in the z-direction. The local high-frequency 
secondary-instability concept supposes that high-frequency oscillations observed a t  
definite time moments in the region of the most deformed profiles (at the peak 
position) are connected with the amplification of small background waves with 
frequencies - low,  as a result of local instability of the flow. There, an equation of 
the Odommerfeld type for the most unstable instantaneous inflexional profile is 
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usually solved. (See for example the work of Nishioka et al. 1980.) Of course, i t  is 
assumed that the dependence of the real profile on x, z, t slowly influences the process 
of the high-frequency-oscillation amplification. In accordance with Landahl’s (1972) 
concept, the condition of equality of the high-frequency-oscillation-packet group 
velocity and the primary-wave phase velocity restricts the amplified high-frequency 
oscillations to the zone of unstable instantaneous velocity profiles for a long period 
and promotes the realization of a local high-frequency secondary instability, even if 
the increments are not very high. 

Of course, the local high-frequency secondary-instability concept, local by its 
nature, cannot (and does not try to) explain the appearance in the peak position of 
the instantaneous velocity profiles, while the wave-resonance concept does. It also 
does not operate with the distributions of amplitudes and phases of the disturbances 
at different time moments and space locations (except for the moments and locations 
where spikes appear). The local high-frequency secondary-instability concept had 
been created only to explain the appearance of the flashes, in particular of the spikes, 
which take place against a background of the existing unstable low-frequency flow. 
An attempt to explain the formation of the inflexion profiles through the simple 
superposition of the mean flow and a fundamental wave of finite amplitude was made 
by Landahl (1972) and Craik (1980). The attempt by Craik (1980) is very close in 
spirit to the spectral representation discussed here, but (due to its simplicity) does 
not represent this phenomenon in detail. 

For the problem of the appearance of the flashes (in the peak position, locally in 
time), the local high-frequency secondary-instability and wave-resonance concepts 
can be compared with each other. It is not clear a priori whether these two concepts 
are contradictory to one another or are mutually complementary, representing two 
different viewpoints of the same phenomenon, both of which are right. These two 
approaches seem at first sight so different that i t  might be thought easy to check their 
correlation experimentally; this is not so. 

With the help of a simple example one may demonstrate the ‘ dualism ’ of possible 
explanations of typical experiments in the spirit of the work of Nishioka et al. (1980). 
Let us consider a simple model situation : local high-frequency secondary instability 
of the primary harmonic wave with amplitude A,, frequency w, and initial phase 8, 
is investigated relative to the high-frequency wave A, 4 A, with frequency 
w, = 8 . 2 ~ ~  and initial phase Or. From the spectral point of view the weakly nonlinear 
interaction of these waves will lead at leading order to the generation of harmonics 
with frequencies w2+w1, i.e. 7 . 2 ~ ~  and 9.20, (figure 15b). The trace corresponding to 
this spectrum is shown in figure 15(a). The phases Ok correspond to the combination 
interaction : 8, = 8, -8, ; 8, = 8, +el, where 8, = O h ,  8, = - 0.4 IC and are shown 
in figure 15(c). The flashes that take $ace in figure 15(a) are connected with the 
periodic synchronization of the harmonic phases (see $3.2) provided by the combi- 
nation nonlinear interaction. It is seen that in this case the oscillation phase within 
the flash drifts in time. This is particularly clearly seen in figure 15(d) where five 
periods of the oscillations are superposed. 

As seen from figure 15, the combination generation of the harmonics in the 
framework of the wave-resonance model looks very much like the local high-frequency 
secondary instability. 

As already noted, the concept of the local high-frequency secondary instability of 
shear flows became widespread after the 1960s mainly owing to the experiments of 
Klebanoff et al. (1962) and Kovesznay et al. (1962). However, the appearance of many 
different theoretical models (quoted above) was not accompanied by further 
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FIQURE 15. Simulation of nonlinear combination interaction. 

experimental substantiation. The theories were based mainly on the above-mentioned 
experimental data. 

The results of the first (and up to now the only) direct experimental investigations 
of the local high-frequency secondary-instability model were published by Nishioka 
et al. (1980), in an investigation of plane channel flow. The excited primary wave has 
a large amplitude and leads to the K-regime of breakdown. Somewhat downstream, 
a spatial packet of time-periodic high-frequency pulsations was introduced with the 
help of a point source. The investigations of the development of these oscillations 
downstream, in the region of inflexion instantaneous velocity profiles formed by the 
primary wave, should have given information about the local high-frequency 
secondary instability of the flow. 

The main conclusion of Nishioka et al. (1980) is: '. . .we may say that the validity 
of the concept of secondary instability has been conclusively verified by the present 
investigation'. An analysis of the data obtained in their work shows that practically 
all of the main results correlate with the local high-frequency secondary-instability 
concept, but on the other hand, practically all of those results (including the peculiar 
properties of amplitude and phase distributions) can be also explained within the 
framework of the wave-resonance concept presented above ! 

6.2. Cmparison with observations of shear$mus 

Let us now consider in detail some of the results obtained by Nishioka et al. (1980) 
and evaluate them from both points of view. 

An amplification of the packet of high-frequency harmonics with the formation in 
the spectrum of a hillock located in the region of the same characteristic frequency 
is one of the necessary manifestations of local high-frequency secondary instability. 
The first visual estimate of this typical frequency was made by Klebanoff et al. (1962). 
Typical frequencies were greater than the fundamental one by approximately an 
order of magnitude. An estimation of the characteristic frequency has been carried 
out also in the experiments of Nishioka et al. (1980), but there a filter of high fre- 
quencies was used. Such a filter can itself create the previously mentioned hillock ( !) 
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FIQURE 16. The influence of cutoff filter frequency on output signal interpreted as secondary 
disturbances. 

in the required range of the high-frequency oscillations because in Nishioka et al. 
(1980) 'The cut-off frequency waa set at a frequency 100 to 150 Hz lower than that 
of the HFP to be observed'. The spectra of pulsations, which simulate the 
disturbances at z = 415 and 430 mm in the peak position in the work of Kachanov 
et al. (1984)' are shown in figure 16 together with the corresponding traces (graphs 
(i) and (iii)). With a filtered output one obtains the traces and spectra shown in graphs 
(ii) and (iv) (figure 16). In Nishioka et al .  (1980) it was noted that '. . .the frequency 
of the natural HFP is about 500 Hz, which may be predicted from the controlled 
experiment '. But it is clear that this characteristic frequency depends completely on 
the cutoff frequency of the filter, because it corresponds to the mean frequency of 
the 'tail' in the spectrum which is left after filtration (see 83.1). Graphs (v) and (vi) 
in figure 16 differ from graphs (iv) only in the cutoff frequency. It is seen that the 
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characteristic frequency of the flash observed changes too. For graphs (ii), (iv), (v) 
and (vi) the cutoff frequencies are about 704, 7wl, 3w, and l l w ,  respectively. (The 
fundamental frequencies in Kachanov et al. (1984) and Nishioka et al. (1980) were 
equal to 96.4 and 72 Hz respectively.) 

Thus, one can obtain almost any characteristic frequency of the flashes within the 
wide natural spectrum. In view of this, the question is raised: where is the boundary 
between the primary and secondary (or low- and high-frequency) disturbances in the 
monotonically attenuating spectra that are observed in K-breakdown (see figure 16 
or 8a)  and what is the ‘characteristic frequency’ of the secondary disturbances here Z 

The local high-frequency secondary-instability model should provide an answer to 
this question. One hopes that it is possible, but it is not simple. This question does 
not exist, however, within the framework of the wave-resonance concept. At  the same 
time the latter model is restricted only by the case of monotonic attenuation of 
harmonic amplitudes with frequency. In  other, strongly nonlinear cases, when the 
hillock in the high-frequency spectrum occurs only the local high-frequency 
secondary-instability model (of the two mentioned) can be applied. 

Analysis of the disturbance travelling velocities plays an important role in 
demonstrating the validity of the local high-frequency secondary instability concept. 
Figure 6 of Nishioka et al. (1980) demonstrates local shear-layer acceleration. At  the 
same time, this phenomenon, i.e. the hillock observed in figure 6 of Nishioka et al. 
(1980) in the high-shear layer, is well explained in the framework of the wave- 
resonance concept and it correlates with the results of Kachanov et al. (1984). Though 
these results were obtained for boundary-layer flow, the absence in Nishioka et al. 
(1980) of the corresponding profiles makes us turn to the data of Kachanov et al. 
(1984). The striking coincidence of most of the results and the existence of very similar 
K-regimes of breakdown in both flows are solid reasons for doing so. 

The point is that, in the region of the high-shear layer (i.e. in the region of spike 
appearance) the amplitudes of high harmonics have values close to their maxima (in 
y-profiles). At the same time, the amplitudes of the fundamental wave and its second 
harmonic have their maxima closer to the wall (see figure 13 and the explanation in 
$5.1). As a result, the ‘weight’ of the high harmonics in the integral signal analysed 
by Nishioka et al. (1980) becomes very large locally in y. These high harmonics, 
because of the synchronization of their valleys, give the slow peak orientated 
downwards that occurs in the region of the valleys of the integral oscillations. Locally 
in time (and near the valley) they impose their phase on the integral oscillations, but 
they interfere in other time moments and do not then contribute to the integral signal. 
At  these other time moments and other y-coordinates, the fundamental wave 
distorted by its second harmonic predominates in the integral signals. This is why 
the increase, observed in Kachanov et al. (1984), of the high-frequency phase 
velocities, and the corresponding increase of the velocity of the spike formed by these 
harmonics (see figure 18 in Kachanov et al. (1984)), leads to acceleration of the 
characteristic points of the oscilloscope traces (which takes place in figure 6 in 
Nishioka et al. (1980) locally in t and y) in the regions where the high harmonics 
‘set the tone’. In  other regions, the ‘phase velocities’ (in the terminology of Nishioka 
et al. 1980) become almost constant in accordance with the behaviour of the phases of 
the fundamental wave prevailing here and its second harmonic. 

So, in this case the wave-resonance concept provides an explanation of some initial 
conditions before the local high-frequency secondary instability appears, and it 
complements the latter model. 

Figure 12 in Nishioka et al. (1980) demonstrated that the high-frequency-oscillation 
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‘phase velocities’ do not depend on their frequency, grow with the amplitude and 
are equal to the high-shear-layer velocity, which also grows downstream. Results 
close to these were obtained in Kachanov et al. (1984), where the phase velocities of 
high harmonics of the fundamental wave grow together with the group velocity of 
the spikes. From the local high-frequency secondary-instability point of view, figure 
12 in Nishioka et a2. (1980) is evidence of the satisfaction of Landahl’s (1972) criterion 
ones. Unfortunately, there is no information in Nishioka et al. (1980) about the 

But it is necessary to note one essential circumstance which was noted first in 
Kachanov et al. (1984). Namely, the usually determined inflexion instantaneous 
profiles on the one hand and the oscilloscope traces, particularly those showing spikes, 
on the other hand are one and the same phenomenon! These are just two different 
sections of the same set of experimental data, respectively obtained at t = const and 
y = const, at each fixed x and z. The spike velocity is here always exactly equal to 
the high-shear-layer speed, because the high-shear layer i s  the spike, not its came .  

To verify whether Landahl’s criterion is satisfied, it  is first necessary to demarcate 
in the frequency spectrum the regions of a primary (low-frequency) and a secondary 
(high-frequency) oscillation. Then it will be possible to compare the velocity of the 
shear layer formed only by primary oscillations with the group velocity of secondary 
ones. Unfortunately, there is no information in Nishioka et al. (1980) about the 
method of determination of the instantaneous velocity profiles. The high-shear-layer 
speed was not determined in Kachanov et al. (1984) at all ; the attention of the authors 
was concentrated on the group speed of the high-frequency oscillations and the phase 
speed of the fundamental wave and its higher harmonics. From the wave-resonance 
point of view, the satisfaction of Landahl’s criterion can be shown to be equivalent to 
the phase synchronization phenomenon, which is an inherent property of parametric 
resonance (see $4.2). 

The profiles of the y-distributions of the high-frequency-oscillation amplitudes 
shown in figures 9 and 14 of Nishioka et al. (1980) are in a good qualitative agreement 
with the high-frequency-harmonic profiles obtained in Kachanov et al. (1984) (see 
figure 13). The integral high-frequency oscillation consists of these high harmonics. 
The form of such profiles has been well modelled in 55.1 by the simple superposition 
of a set of spatial waves for each of the frequencies, and each has the form of profile 
typical of the linear region of the development. The change in time of the flash 
amplitude, is connected, as was noted above, with the synchronization of the 
harmonic phases which takes place near the time moments (b) and (c)  of Nishioka 
et al.’s figure 9. 

To demonstrate the comparability of the results of Nishioka et al. (1980) with the 
wave-resonance concept and to show the dualism, mentioned above, of wave- 
resonance and local high-frequency secondary-instability representations (as 
concerns the problem of flash appearance), two pairs of traces are shown in figure 
17 (graphs i). The first pair (a) was obtained with the help of a computer simulation 
of combination wave interaction in the framework of the wave-resonance concept 
under the conditions of the experiment in Nishioka et al. (1980). The second curve 
(b )  is a reproduction of figure 8 from Nishioka et al. (1980). The amplitude spectra 
of the upper and lower (after the filter) curves (a) (i) are shown in figure 17 (a) (curves 
ii and iii). The low-frequency part of the spectrum (a)(ii) corresponds to the 
attenuation of harmonic amplitudes in accordance with a geometric progression with 
factor q = 0.4 and models the primary low-frequency pulsations in Nishioka et al. 
(1980) (wl = 72 Hz). The amplitudes of high-frequency harmonics in spectra (a) (ii) 
and (b)  (ii) simulate the reproduction, by combination interaction, of a priming 
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RCJIJRE 17. Oscilloscope traces from the experiments by Nishioka et uZ. (1980) (curve b(i)) and its 
simulation within the framework ofthe wave-resonance concept (curvesu(i) and (u, b )  (ii), (iii), (iv)). 

high-frequency wave with wp = 600 Hz, which was introduced in the flow in Nishioka 
et al. (1980). Note that although the actual values of high-frequency-pulsation 
amplitudes were slightly varied to coincide with the experiment, the phases of 
high-frequency harmonics were obtained only from the properties of combination 
interaction. The curves (i) (in figure 17b) are presented for the unified timescale in 
graph (iv), figure 17. 

A comparison of the curves (a) and (b) in figure 17 illustrates the fact that the 
appearance of a high-frequency wave packet, observed in Nishioka et al. (1980) under 
high-frequency excitation, can be considered from both the local high-frequency 
secondary-instability and wave-resonance points of view. It does not mean that the 
development of high-frequency oscillations, under the conditions of the controlled 
experiments for the investigations of local high-frequency secondary instability such 
as in Nishioka et al. (1980), is limited by a combination interaction. It is only the 
first (fastest) step of wave development. Then the conditions appear for the 
parametric amplification of priming harmonic waves with frequencies wk 5 up (see 
$4). It can be shown that the parametric resonant amplification explains qualitatively 
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the phenomenon of the fast decrease of a typical frequency within the high- 
frequency-oscillation packet which was observed in Nishioka et al. (1980). It is 
connected with the growth of the weight of relatively low-frequency pulsations within 
the secondary high-frequency-oscillation packet, which takes place as a result of a 
parametric amplification of a broad spectrum of ‘ subharmonic’ waves (see $3). This 
phenomenon can probably be explained in the framework of the local high-frequency- 
instability concept too (for example, through the downstream transformation of the 
instantaneous velocity profile), although the explanation presented in Nishioka et a2. 
(1980) (through the wave-packet acceleration) is not correct. 

7. Conclusion 
The wave-resonance idea presented here does not constitute a complete theory only 

the wave-resonance concept exists now. To decide conclusively the question of the 
place and role of this concept in understanding laminar-boundary-layer breakdown, 
it is necessary to  carry out real calculations and compare the results with experiments. 
This may be direct numerical computations like those by Kleiser (1982), Orszag 
& Patera (1983), Wray & Hussaini (1984), and Laurien (1986) or some analytical 
results in the spirit of the Craik-Nayfeh-Herbert-Zelman studies, which of course 
pose great difficulties but are possible in principle. As with the results of computer 
experiments, they should be analysed, just as experimental data, to determine the 
principal mechanisms that are responsible for a breakdown. It is not sufficient to 
obtain good agreement between calculation results and experimental ones, it is 
necessary to understand why these results are obtained. 

The proposed wave-resonance concept is just such an attempt to understand the 
mechanisms that dominate the first stages of breakdown, including the appearance 
of spikes. The wave-resonance model, even at  the present conceptual level has great 
potential to explain (at least qualitatively) many observed features of laminar- 
boundary-layer breakdown in both known regimes. The analysis of the N-regime of 
breakdown was carried out by Kachanov & Levchenko (1982) ; the K-regime has been 
discussed in the present work. It is not difficult to show that in the framework of 
the wave-resonance concept many properties of intermediate regimes and the 
transformation of a transition process from the N- to the K-regime (and vice versa), 
studied by Saric et al. (1984), can also be better understood. 

It should be noted that the parametric resonant amplification of background 
random subharmonic priming waves, which leads to randomization in the N-regime 
of breakdown, can also take place in the K-regime. Moreover, the appearance in the 
K-regime of a large number of higher harmonics (including the plane ones) multiplies 
this process. It can be observed to take place in the K-regime in the latest stages of 
the development. That is why the name ‘subharmonic regime ’ is non-descriptive and 
the term ‘N-regime’ is more short, convenient and preferable. Note that the terms 
‘C-type ’ and ‘H-type ’ of secondary instability introduced by Saric et al. (1984) should 
not be confused with the types (regimes) of breakdown; because, in contrast with the 
Craik and Herbert theories, there is no convincing evidence of a difference between 
these regimes, both of which correspond to the N-breakdown first observed in I. 

As far as the process of the local appearance in space and time of spikes is concerned, 
the wave-resonance concept complements the well-known local high-frequency 
secondary-instability concept and provides a new viewpoint that can give some 
additional insight, especially after construction of the corresponding theory. In 
particular, most of experimental results by Nishioka et al. (1980) (where the local 



72 Yu. S. Kachanov 

high-frequency secondary instability concept was substantiated) can be qualitatively 
explained in the framework of the wave-resonance concept. At the same time, this 
concept operates not only with the local process of flash appearance, but also claims 
to give an explanation of the formation of the inflexional instantaneous profiles as 
well as of the structure of the whole field of the disturbances (beginning almost from 
their sources and including the formation of spikes and their doubling both in the 
peak and valley positions) in four-dimensional space (x, y, z ,  t ) .  The analysis of the 
applicability of the wave-resonance concept to the description of these phenomena, 
carried out in this work, is very plausible. 

One can conclude that the development of the wave-resonance concept and its 
application to the analysis of numerical and physical experiments, together with the 
construction on this basis of a complete theory, can give an essential impetus towards 
a better understanding of the nature of breakdown. 

The author wishes to express his thanks to Professor M. T. Landahl and Dr 
A. D. D. Craik for very valuable discussions and remarks. I am grateful also to 
Professor V. Y a. Levchenko for encouragement and advice. 
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